The Inherent Walking Direction Differs for the Prothoracic and Metathoracic Legs of Stick Insects
نویسندگان
چکیده
On a slippery surface the forelegs of a decapitated stick insect walk forwards and the hindlegs, backwards. Animals with only forelegs but that are otherwise intact walk forwards, whereas animals with only hindlegs walk mostly backwards. Usually when intact animals start to walk, their hindlegs exert a rearwards thrust on the substrate, but occasionally the starting forces are directed forwards. A rampwise extension of the femoral chordotonal organ in the fixed foreleg of a walking animal first excites the flexor tibiae muscle (positive feedback). Towards the end of the ramp stimulus the activity of the flexor decreases, and the extensor tibiae motor neurones become strongly active. All experiments indicated that the inherent direction of movement of the metathorax is rearwards. In intact animals there must be a coordinating pathway from the prothorax to the metathorax that, together with the suboesophageal ganglion, induces the hindlegs to walk forwards.
منابع مشابه
Regeneration of peripheral nerves to supernumerary legs in cockroaches.
1. Clusters of legs were grown from metathoracic coxae of the cockroach. Legs of a cluster had different segmental origins, sizes, and orientations. 2. Regenerating metathoracic nerves tended to enter the nearest leg, and to a lesser extent of the largest leg, but showed no significant tendency to penetrate metathoracic rather than prothoracic legs, or normally oriented rather than abnormally o...
متن کاملCentral generation of grooming motor patterns and interlimb coordination in locusts.
Coordinated bursts of leg motoneuron activity were evoked in locusts with deefferented legs by tactile stimulation of sites that evoke grooming behavior. This suggests that insect thoracic ganglia contain central pattern generators for directed leg movements. Motoneuron recordings were made from metathoracic and mesothoracic nerves, after eliminating all leg motor innervation, as well as all in...
متن کاملThe Control of Walking in Orthoptera Ii. Motor Neurone Activity in Normal Free-walking Animals
A brief description is given of the anatomy, innervation and mechanical properties of the extensor tibiae muscles of the locust. Each is innervated by a 'fast' (FETi) and 'slow' (SETi) excitatory axon, one branch of a common inhibitor (CI) and a fourth small axon (DUMETi). The prothoracic and mesothoracic extensors contract more rapidly than the metathoracic muscle but exhibit a stronger 'catch...
متن کاملSensory feedback induced by front-leg stepping entrains the activity of central pattern generators in caudal segments of the stick insect walking system.
Legged locomotion results from a combination of central pattern generating network (CPG) activity and intralimb and interlimb sensory feedback. Data on the neural basis of interlimb coordination are very limited. We investigated here the influence of stepping in one leg on the activities of neighboring-leg thorax-coxa (TC) joint CPGs in the stick insect (Carausius morosus). We used a new approa...
متن کاملStick Insect Locomotion on a Wheel: Patterns of Stopping and Starting
The relationship between standing and steady walking was investigated for stick insects walking on a wheel. Normal hexapod coordination patterns ensure that each point in the gait cycle has static stability. Nevertheless, stick insects show preferred stopping sequences: the final protraction in ipsilateral metachronal sequences is most often by a front leg and least often by a rear leg (Fig. 1,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005